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THE ENDOMORPHISM RING OF A A-MODULE 
OVER A RIGHT NOETHERIAN RING 

BY 

A. K. BOYLE AND E. H. FELLER 

ABSTRACT 

Let R be a right noethenan ring. A module MR is called a A - m o d u l e  provided 
R satisfies the descending chain condition for annihilators of subsets of M. For a 
A-module, a series 0 C M~ C M: C �9 �9 �9 C Mo = M can be constructed in which 

the factors M , / M ,  ~ are sums of c~,-semicntical modules where a~ =< ol2 _<- "-" ~< 
c~,. In this paper we utilize this series m studying A = End(MR). It is shown that 
if N = {f E A lKer[ is essential in M}, then N is nilpotent. Specific bounds on 
the index of nilpotency are given in terms of this series. Further if M is injective 
and a-smooth,  the annihilators of the factors of this series are used to provide 
necessary and sufficient condmons for End MR to be semlsimple. 

1. Introduction 

Throughout  this paper, R denotes a right noetherian ring with Krull dimen- 

sion a, i.e. I R t = a. As in [7], a module MR is termed a A-module provided R 

satisfies the descending chain condition for annihilators of subsets of M. In [14], 

it is shown that if MR is a /3-smooth module with [ R /ann  M I =/3, then M is a 

A-module. We show that every A-module over R has a close relationship to 

modules of this type. Given any A-module M, there exists a chain of submodules 

0C M, C . . .  C M, = M such that the factors are /3,-smooth A-modules and 

IR/ann(M,/M, ~)[ =/3,. 

If A = EndR (M) and N(A) = {[ E A IKer f_-<e M}, then Shock provides condi- 

tions in [16] which assure that nil subrings of A are nilpotent. If the module M is 

noetherian, these conditions are satisfied. In [5], this result is extended to certain 

essential extensions of M. We show that if M is a finite dimensional A-module, 

then nil subrings of A are nilpotent. From this result it follows that if M is any 

a-smooth,  finite dimensional R-module  and if N is any essential extension of iV/, 

then in EndRN nil subrings are nilpotent. 

Let  M be a finite dimensional a -smooth  module. In section 3, necessary and 

sufficient conditions for EndR (E(M)) to be semisimple are provided in terms of 
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linkage of a-coprimitive ideals of R. In this process, we determine exactly when 

EndR I is a division ring, where I is an a-indecomposable injective module. 

In section 4, we apply the results of [7] and [14], to determine that 

the localization R ~  of R with respect to the topology of right ideals ~ = 

{H <= RR I t R / H  I < a } is semiprimary. Utilizing the results of section 3, we show 

that R,,, is semisimple if and only if SI = I for all a- indecomposable injective 

modules L 

Throughout  this paper, A denotes an arbitrary ring and R denotes a right 

noetherian ring with Krull dimension a. 

From [3], [4] and [8], we have the following definitions and conventions. All 

modules are right unital. If S is a subset of MA, then S r =  annA S = 

{a ~ A I s a = O f o r a l l s E S } , a n d i f S i s a s u b s e t o f A  t h e n S  ~ = {x E M I xs : O 
for all s E S}. If N is an essential submodule of M, we write N_-<c M, while 

EA (M) or E(M) denotes the injective hull of MA. 
Let /3 be an ordinal_<-a. An indecomposable injective module is called a 

/3-indecomposable injective if it contains a/3-critical module. The annihilator of 

a/3-critical R-module  is termed a/3-coprimitive ideal. An R-module  M is called 

/3-semicritical provided there exists a finite collection of submodules K, , .  �9 K, 

such that ("1~'=~ K, = 0, where M/K, are /3-criticaI for each i. 

Let A/~ be the topology [17] of right ideals H of R such that IR/HI</3,  
where/3 is an ordinal - 1 </3 _-< a. If NR is a submodule of M, then the/3-closure 

of N in M is C I ~ ( N ) = { x E M I x H C _ M ,  for some H E ~ o } .  Now M is 

/3-torsionfree provided CI~ (0) = 0, which implies that I xR I >=/3 for all x E M. If 

M is/3-torsionfree, and there exists a nonzero x E M such that I xR I =/3, then 

M is termed a ~3-module. We will say that a module MR is ~3-smooth provided 

for every finitely generated submodule N of M, we have IN I=/3. This is 

equivalent to the statement that every submodule N of M, which has Krull 

dimension, has Krull dimension /3. 

2. The semicritical socle series of A-modules and their endomorphism ring 

Let M be a right R-module.  If /3 is an ordinal, / 3 _ - < a = l R [ ,  then the 

/3-semicritical socle of M is defined to be the sum of the /3-semicritical 

submodules of M. This is denoted Sc ~ (M). If M has no/3-semicritical modules, 

then S c ~ ( M)=0 .  The ~3-critical socle of M is the sum of the /3-critical 

submodules of M and is denoted S~ Clearly S~(M)C Sc~(M). 

If M is/3-torsionfree, it is shown in [4] that the/3-closure, CI~ (S~M), of SOM 
in M is ScUM and hence M/ScOM is/3-torsionfree. This enables us to define the 
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following series. The /3-semicritical socle series for M is defined inductively: 

ScUM = ScOM, Sc.~ = Sc~(M/Sc~,M). Thus ScUM C ScUM C . . -  C M, and this 
is called the /3-semicritical socle series for M. For simplicity, if M is /3- 

torsionfree, we will delete the/3-superscript when referring to the/3-semicritical 

socle series for M. Thus we write Sc.M for Sc.~M. 

Let M be a right R module and let/31 denote the minimal Krull dimension 

among nonzero submodules of M. In general the/3,-semicritical socle series for 

M need not be finite. However in the case when this is finite, i.e. [,.)~_~ Sc,~,M = 

Sc~h)M for some integer n (1), we can continue this procedure. Let M, = Sc~h)M. 

Since the/3rsemicritical socle series has stopped at M1 necessarily M / M ,  has no 

submodules of Krull dimension /3,. Let /32>/31 denote the minimal Krull 

dimension among nonzero submodules of M/MI .  Then M/M1 is/32-torsionfree 

and we can construct a/32-semicritical socle series for M/M2. If at each stage we 

obtain a finite /3,-semicritical socle series for M / M , _ ,  and if there are only a 

finite number of these stages, we will say that M has a finite semicritical socle 
series and write 

/3~ /32 
0 C Sc~'M C-" �9 C Sc.mM = M, C Sc~M C" �9 �9 C Sc.(z)M 

(*) = M 2 C " "  C Mk , C Sc~kM C - . .  C Sc~k)M 

=M~ = M .  

By construction, M/M,_I is/3,-torsionfree and M,/M,_, is/3,-smooth. In addition, 

]3,>/31 for i > j .  

2.1. LEMMA. Let M be a module with .finite semicritical socle series (*). Let N 

be a nonzero submodule of M which has Krull dimension. Then N C M, iff 

IN  I <-_/3,. Furthermore, J N I = ~, for some j, 1 <= j < k. 

PROOF. Suppose IN]_-</3,. Since M/M,  is /3,+l-torsionfree and since 

I N + M,/M, ] < IN[ </3, </3,+i, then N + M,/M, G M/M,  implies that 
N + M,/M, =0,  and N C_M,. 

The remainder is proved inductively. Since MI is/31-smooth, if N C M1, then 

I NI =/31. Suppose N C M,. Let j denote the smallest integer such that N C M,. 

Then N + M,_~/M~ ~ is a nonzero submodule of the/3,-smooth module Mj/M,_I 

and thus IN + M~_,/M>~ I =/3,. By induction i N f-/M~-I [ =</3,_,. Thus I NI = 

sup{IN + Mj_,/M,_I [, IN n M, 1[} =/3, -<_/3,. 

Recall that an A module M is called a A-module if A satisfies the descending 

chain condition on annihilators of subsets of M. In the next sequence of results 
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we show that every A-module over the right noetherian ring R has a finite 

semicritical socle series. 

Over a ring with Krull dimension every smooth module having the same Krull 

dimension as the ring, is a A-module. This is verified in [14, 2.3] and is stated 

below for reference. 

2.2. LEMMA. Let A be a ring with Krull dimension [3. I f  M is a [3-smooth 

module, then M is a A-module. 

Thus for the ring R, where I R [ = a, every a-module  is a A-module. The next 

result provides us with a partial converse - -  if M is a [3-smooth A-module then 

JR/ann M I = [33. This enables us to utilize properties of the a-semicritical socle 

series in [4]. 

If M is a right R-module,  le t /V/denote the quasi-injective hull of M. Unlike 

E(M) ,  when M is [3-smooth the same is true of 5,~ since l~t = AM, where 

A = Endn (E(M)) .  This close relationship between M and ~t  enables us to prove 

the following. 

A module MR is .finitely annihilated if there exists x l , ' - ' ,  x, @ M such that 

a n n M  = x ~ N ' . . n x ' , .  

2.3. THEOREM. Let MR be a [3-smooth module with quasi-injective hull i~4. 

The following are equivalent. 

(1) R / a n n M  is [3-smooth. 

(2) M is a A-module. 

(3) M is finitely annihilated. 

(4) There exists a ring S such that ~7I is an (S, R )-bimodule and sA4 is finitely 

generated. 
In this case M and ~4 have.finite [3-semicritical socle series. Furthermore the ring 

S can be chosen to be EndR~/. 

PROOF. (t)---~(2): Since /3 = IMI = [ R / a n n M I ,  this follows from 2.2. 

(2)-~ (3): Clear. 

(3)---~(4): Let S = EndR~/. By [1, 1.5], slQ is finitely generated. 

(4)---~ (1): Since s~r is finitely generated, there exists x~,. �9 -, x, E M such that 

S x ~ + ' " + S x , = f 4 .  Thus ann(.M)=N,"=~ann(x,). By [1, 1.5], there exist 

m h "  ", m, E M such that a n n M  = ('11=1 ann(m,). This provides a monomorph- 

ism R/ann  M ~ M ~'~. Since M is/3-smooth necessarily R/ann  M is/3 -smooth. 

Since [ R /ann  m I =/3 = I m I, then m has a finite semicritical socle series by 

[4, 3.3]. Similarly this is true for / f / .  

The equivalence of (3) and (4) can also be found in [7, p. 15]. 
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Neither the injective hull nor the quasi-injective hull of a A-module is 

necessarily a A-module as can be seen in the following example. Let R = Z and 

M = Q O Z , .  Then M is a A-module. However  .~/= E(M) = Q O Z ~  which is 

not a A-module. Note that M is not smooth. If M is fl-smooth for 'some fl then 

the proof of 2.3 shows that ]Q is also a A-module. As a result, 2.3 can also be 

established by means of the results in section 4. 

2.4. THEOREM. If MR is a A-module, then M has a finite semicritical socle 
series. 

PROOF. Let  fl~ denote the minimal Krull dimension of nonzero submodules 

of M and let M~ = U~=~ Sc~,M. Then M~ is/3~-smooth and is a A-module. By 2.3, 

JR/ann M, I = ill. Hence by [4, 3.3], M1 has a finite semicritical socle series. 

Let fl2>fl, denote the minimal Krull dimension of nonzero submodules of 

M/MI, and let M2/M~ = U~< Sc~,'-(M/MI). Then M~/MI is a fi2-smooth module. 

Since M2 is a A-module, there exist xl,.. . ,x,, @M2 such that ann M2= 

N,"_~ ann(x,). Then either x, ~ M, and Ix,RI =/31 or x, ~ M2 - M, and Ix,R [=/32 

by 2.1. Thus JR~ann(x,)[=~31 or /32 and since [R/annM21= 
supl . . . .  {IR/ann(x,)]}, then IR/annM21=/3, or /32. However  M2/M~ is an 

R/ann  M~ module which is fl2-smooth and hence [R/ann M21 =/32. By [4, 3.3], 

since M,_/M~ is /3e-smooth and [R/annM21 =/32, M2/MI has a finite /32- 

semicritical, socle series. 

Continuing in this fashion we generate a sequence of modules M1 C M2 C 

M 3 C ' . . C M  where M,+,/M, is /3,<-smooth and IR/annM, .~]=/3 ,< .  The 

sequence {annRM~} is a descending chain which must stop, since M is a 

A-module. Thus there exists an integer n such that annRM, = annRM~ for all 

] = n. This implies that ft, =/3j for all ] => n and hence that 5//, = M~ for all ] _-> n. 

Thus M, = M. Since each M,+JM, has a finite semicritical socle series, the same 

is true of M. 

From the above proof we have that M,/M,_I is /3,-smooth and that 

]R/annM, l=/3, which implies that IR/ann(M,/M,_,)l=/3,. Thus from 2.3, 

M,/M,_I is a/3,-smooth A-module. Hence 2.4 yields a chain 0 C M~ C M2 C. �9 �9 C 

M, = M in which the factors are smooth A-modules over R. 

We now examine the endomorphism ring A of a A-module in light of the 

structure provided by 2.4. We show that if M is finite dimensional then nil 

subrings of A are nilpotent without assuming any additional conditions on M, 

such as the condition that M is injective. Our procedure utilizes N ( A ) =  

{f E A IKer f_-<, M}. We begin by examining the interaction of N(A) and the 

semicritical socle series. Recall if M is /3-torsionfree, then we write ScuM in 

place of Sc,~M. 
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2.5. LEMMA. Let M and N be right R-modules and let f C HomR (M, N). 

(1) If K e r f < ~ M  and x E ScCM, then [f(xR)[ < ~8. 
(2) If M and N are fl-torsionfree, then f(Sc, M ) C S q N  for all i. 
(3) If  M and N are fl-torsionfree and Kerf=<eM, then f ( S q M )  = 0. 

PROOF. (1) Let x E SceM. Then x = x~ + .  �9 �9 + x, where x,R is fl-semicritical 

and xR C_ E,%, x,R. Thus If(xR )l <-_ sup~,<, [f(x,R )l. Since x,R is/3-semicritical 

and Kerfnx ,R<_ex,R,  by [3, 2.4], [ f ( x ,R) [=[x ,R /x ,RnKer f l< /3 .  Hence 

[f(xR )J < fl. 
(2) Let C be a fl-critical submodule of M. If K e r f  n C / 0 ,  then f (C)  = 0 

since N is fl-torsionfree; otherwise f ( C ) ~ - C  Hence f (S~M)CSON. If 

x ESc ,M=CI~(S~M) ,  then x T C S ~ M  for some T E d ~ .  Hence f ( x ) T =  
f(xT)C_ SON which implies that f ( x ) E  C10 (SON)= SqN. 

Proceeding inductively, if f(Sc,M)C_Sc,N, then f induces a mapping 

f* : M/Sc,M ~ N/Sc, N where f*(m + Sc,M) = f (m)  + SqN. Then 

f*(Sc,_,M /Sc,M) = f(Sc ~ (M /Sc,M)) C Sc ~ (N /Sc,N) = Sc,+lN/Sc,N. 

Thus f(Sc,+~M) C SC,§ 

(3) This follows from (1), since N is /3-torsionfree. 

2.6. PROPOSITION. Let M be a fl-torsionfree module with fl-semicritical socle 
series O C S q M  CSczM C . . . C M .  If A = E n d R M  and N = N ( A ) ,  then 
N k �9 SckM = 0 for all k. 

If Ak = EndR (SckM) and Nk = N(Ak), then N~ = O. 

PROOF. By 2.5, if f @ N, t hen / (Sc lM)  = 0. Thus N ; S q M  = 0. Furthermore,  

f induces a mapping of M/Sc1M into M. Since Sc2M/SqM = Sc,(M/SqM),  by 

2.5, f(Sc2M)_CSqM. Hence N . f ( S c 2 M ) = 0  for all f E N  and therefore 

NeSc2M = 0. Continuing in this fashion we have that N k �9 SckM = 0. The proof 

of the last statement is similar. 

Recall that a ring R is termed semiperfect provided that idempotents modulo 

the Jacobson radical J(R)  can be lifted, and R / J ( R )  is semisimple artinian. A 

semiperfect ring is semiprimary if J(R)  is nitpotent. 

If M is a A-module over R with endomorphism ring A, we now show that 

N(A) is nilpotent. Thus if M is finite dimensional and quasi-injective then A is 

semiprimary. 

2.7. THEOREM. Let M be a A-module with finite semicritical socle series (*). 
Let A = E n d R M  and N = N(A) = {f ~ A I Ker f <e M}. Then N is nilpotent. 
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Furthermore, the index of nilpotency of N is <= the sum of the nonleading 
coefficients of the polynomial II,k=~ (x + n(i)). 

PROOF. We first verify the following. If NPM, = 0, then N 'p+'+~Sc~,-,M = 0. 

The proof is by induction on j, where O<=j <-n(i). If j =0 .  then Sc~,*~M = M, 

and hence 0 =  NOM, = NPS@,,M. Assume j >-0 and let f ~ N 'p§247 By induc- 

tion, f(Sc~,.,M) = 0. Let x E Sc~+]'M. Then f (xR)  is a homomorphic image of the 

/3,.,-semicritical module xR = xR + Sc~,.,M/Sc~,.,M. Thus if 

K e r f =  (Ker f  N xR ) + Sc~,+, M /Sc~,+, M <=e xR, 

then if(xR)I </3,+, by [3, 2.4] and hence f (xR)C M, by 2.1. 

If Ke r r  is not essential in xR, let /5 denote its relative complement in xR. 

Since f(Sc~,+,M)= 0, f induces a map f*'xR---~ M, where f*(xr)= f(xr). Then 

f*(D + Kerr) ~ / 5  and hence f*(D + Kerr) C Sc~,+,M. Let h E N. By 2.5 and 2.1, 

h(Sc~,+,M)CM,. Thus hf*(D + K e r f ) C  M,. Since xR is /3,+,-semicritical and 

K e r r + / )  <=exR, then IxR/Kerf+/)]</3,+1 by [3, 2.4] and hence 

I hf*(x-R)/hf*(Kerf+ ff))l < fi,+,. 

Since hf*(Kerf+ D) C M,, then I hf*(xR---) + M,/M, [ </3,+,. However M/M, is 

/3,+,-torsionfree which necessitates that hf*(xR)= hf(xR)CM,. 
Thus in either case hf(xR ) C M,. By hypothesis, NPhf(xR ) = 0. Since f, h and 

x were chosen arbitrarily, we have that 0 =  NPNN 'p§ +'Sc~;],M = 

N~176 = 0, which verifies the claim. 

By 2.6, N~176 = 0. Since M2 = Sc~2)M, then from the above argument we 

have that N"~ = 0. Note that n(1)n(2)+ n(1)+ n(2) is the sum of 

the nonleading coefficients of (x + n (1))(x + n (2)). Continuing in this manner we 

obtain the desired result that the bound on the index of nilpotency of N is the 

sum of the elementary symmetric polynomials in the symbols n(1) , - - . ,  n(k). 
The bound on the index of nilpotency in 2.7 cannot be improved as the 

following example shows. Let 

. 

The semicritical socle series (*) for M is 

Hence n(1)=  n(2)=  1. Let f, h E A  where 

z':l z 

Z P ] O Z  =M~ = M .  
Zp 
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0] 0t f([0 ff]'n)=([~ ~ ) and h([ 0 , . 
Then f, h C N(A) and h . f ~  0. Thus N 2 / 0 .  The index of nilpotency of N is 

3 = n(1)n(2) + n(1)+ n(2). 

2.8. COROLLARY. Let M be a A-module with semicritical socle series (*). Let 

A = EndRM and N = N(A). I f  S~,M<=eM, then the index of nilpotency of N is 

=< n(1)n(2) . .  �9 n(k) .  

PROOF. If S ~,M =<~ M, then Sc~,N = 0 for all 2 _<- i =< k. The proof now follows 

as in 2.7 with this modification. 

Combining 2.7 and [16, 3] we have 

2.9. COROU~ARY. I f  M is a finite dimensional A-module, then nil subrings of 

EndRM are nilpotent. 

Every essential extension of an a-smooth R module is o-smooth and 

therefore is a A-module by 2.2. Thus 

2.10. COROLLARY. I f  M is a finitely general s -module  over R and T is any 

essential extension of M, then nil subrings of EndR T are "nilpotent. 

If H is a semiperfect ring with Jacobson radical J(H) ,  and T an ideal of H 

such that J (H)"  C T C J ( H ) ,  then H / T  is semiprimary. This is precisely the 

relationship which exists between End(M) and End(Sc,M) when M is a finite 

dimensional/3-smooth injective module. In this situation we are not assuming 

that M necessarily has a finite semicritical socle series. 

2.11. PROPOSITION. Let M be a ~-smooth, .finite dimensional injeetive module 

over R with semicritical socle series 0 = ScoM C Sc~ M C. �9 �9 C M. Let H = EndR M, 

J = J (H) ,  H, = EndR(Sc,m) and J, = J(H,).  Then 

(1) H is semiperfect and H, is semiprimary for all i. 

(2) H, ~ H~ 7], where 7], is an ideal of H such that J' C_ T, C J. T, C_ Tj for ] < i, 

and (~=1 T, = O. 

(3) H,/J, -~ H/J.  

PROOV. (1) Since M is a finite dimensional injective, and Sc,M is quasi- 

injective by 2.5, we have J ( H ) =  N ( H )  and J ( H , ) =  N(/-L). Now apply 2.6. 

(2) By 2.5, Sc,M is quasi-injective for all i. Thus the mapping 0, :H-+/ - / ,  

where 0 , (h )=  h Isc,M is a ring homomorphism which is surjective. Let 7], = 

Ker0,. By 2.6, J '  = 0  and hence J ' C  T, since 14,-~H/T, .  If h E T, then 
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Sc,M C_ Ker h. Since M is /3-smooth, then Sc,M=<e M, and thus Ker h--<e M. 

Hence T, CJ. Clearly T, C_ Tj for j =< i. and ("l,_~ T, = 0, since M = I..J~_~ Sc,M 

and (O~=l T,)(M) = 0. 

(3) This is clear since 0, ( J ) =  J,. 

Let I be an a-smooth  indecomposable injective module. By [8, 2.2], ann(Sc I)  

is a minimal a-coprimitive D. Furthermore,  by 2.11, E n d ( S c I ) ~  H / J ( H )  is a 

division ring F. Then using [4, 4.11] and chapter 2 of [11], one can show the 

following. 

2.12. PROPOSITION. Let I be an a-indecomposable in]ective module, let D = 

ann(Sc~I). Then F = EndR Sc~I is a division ring. Furthermore S CI  is a finite 

dimensional vector space over F with dimension equal to the uniform dimension of 

R /D.  

3. When End M is semisimple 

Let M be an a-smooth  injective module over R. In this section we examine 

the annihilators of the factors of the a-semicritical socle series of M, and provide 

necessary and sufficient conditions for EndR M to be semisimple. 

From [8], there exists a one-one correspondence between the isomorphism 

classes of a- indecomposable injectives and minimal a-coprimitive ideals given 

by I---> D = ann(S~I). We will say that D is the minimal a-coprimitive ideal 

associated with L Using this relationship, it is shown in [4, 2.11] that 

ann(Sc?M/ScL,M) is a finite intersection of a-coprimitive ideals. Since the 

annihilators of a -smooth  modules are determined, we will restrict our attention 

to this situation. 

Let MR be an a-smooth  module with a-semicritical socle series 0CSc~M C 

Sc2M C. �9 �9 C Sc,M = M. A minimal a-coprimitive ideal D is linked to M if D 

annihilates a nonzero submodule of Sc,M/Sc, 1M for some i, 1 -< i _-< n. In this 

case we say that D is linked to M at the ith layer. By [4, 4.4] this is equivalent to 

saying that D annihilates a factor module in a critical composition series for N, 

where N is a finitely generated submodule of MR. 

3.1. PROPOSITION. Let D be a minimal a-coprimitive ideal of R and let I 

denote the associated a-indecomposable injective. If M is an a-smooth module, 

then D is linked to the ith layer of M if and only if there exists a nonzero 

homomorphism of Sc,M/Sc,_~M into 1. 

PROOF. If D is linked to the ith layer of M, then D annihilates a critical 
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submodule C" = C + Sc,_~M/Sc,_~M of Sc,M/Sc,_~M. Since Sc,M/Sc, ~M is a -  

smooth, I(~1 = a. Hence by [8, 2.1], E ( C ) =  L The composite of the projection 

map of C onto C' and the inclusion of C into I provides a nonzero 

mapf:C--*C----~I .  This extends to a map of Sc,M/Sc, ~M into I by the 

injectivity o f / .  

Conversely, suppose f :Sc ,M/Sc ,_~M--*I  is a nonzero homomorphism. If 

S~ then Kerf<=eSC,M/Sc,_~M. By 2.5, we then have 

f = 0, which is a contradiction. Necessarily then there exists a critical submodule 

t~ of Sc,M/Sc,_~M such that f ( C ) ~  0. Since the minimal Krull dimension of 

nonzero submodules of I is a, then f(C)~-if?. By [8, 2.2], D = ann S~I and 

therefore,  0 = f ( C ) D  = f ( C D ) ,  which implies that tffD = 0. Thus D annihilates 

a nonzero submodule of Sc,M/Sc, aM and hence is linked to M at the ith layer. 

If D and D*  are minimal a-coprimitive ideals of R and I* is the a -  

indecomposable injective associated with D * then we say that D is linked to D * 

if D is linked to I*. 

3.2. COROLLARY. Let D and D* be minimal a-coprimitive ideals of R with 

associated a-indecomposable injectives I and I*,  respectively. Then D is linked to 

D * if and only if HomR (I*, I)  / 0. 

PROOF. If D is linked to D*,  then D annihilates a nonzero submodule of 

Sc,I*/Sc,_d* for some i. By 3.1, there exists a nonzero mapf:Sc,I*/SC,_lI*---> I. 

Thus 7r~ : Sc,I* --~ Sc,I*/Sc,_~I* --> I is a nonzero homomorphism which extends 

to f* : I* --> I, by the injectivity of L 

Conversely, let f : I * - - > I  be a nonzero homomorphism. Since I * =  

U]:~ Sc,(I*), there exists a smallest integer t such that S c , I * Z K e r f .  Then f 

induces a nonzero homomorphism f :Sc , I* /Sc ,  d*--> I. By 3.1, D is linked to 

I*, and hence to D*.  

In [6], Faith provides conditions which determine when End I is a division ring 

for an arbitrary indecomposable injective. Linkage can be used to this purpose in 

the following way. 

3.3. THEOREM. Let IR be an a-indecomposable injective module with a -  

semicritical socle series 0 C Sc~I C Sc:I C- �9 �9 C Sc,I  = I. Let D be the minimal 

a-coprimitive ideal associated with I. The following are equivalent. 

(1) A = EndRI is a division ring. 

(2) Hom(I /K ,  I )  = 0 for all nonzero submodules K of I. 

(3) Hom(I/Sc,I ,  I )  = 0 for all i, 1 <-_ i <- n. 

(4) D is linked to I at only the first layer. 
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PROOF. The proof of (1)---~ (2) and (2)---~ (3) is direct. Now (3)---~ (4) follows 

from 3.1. 
(4)---~ (1): Let J denote the Jacobson radical of A. Then J = {j E A [ Ker j  =<o I} 

and it suffices to show that J = 0. If 0 ~ j E J, let i denote the smallest positive 

integer such that j (ScJ)  ~ 0. By 2.5, j(SclI) = 0 and hence i > 1. Then j induces 

a nonzero map j* : Sc,I/Sc,_d--~ I, which implies by 3.1 that D is linked to the 

ith layer o f / ,  where i >  1. Thus J = 0 ,  and EndRI is a division ring. 

By 2.3, if I is a/3-smooth A-module then ]R/annI]  =/3. Thus an analogous 

statement to 3.3 can be made for an indecomposable injective which is a 

/3-smooth A-module. 

3.4. THEORZM. Let M be a .finite dimensional a-smooth module and let 
E ( M )  = 1i @ " "  @ I~, where L is an a-indecomposable injective for 1 <= i <= n. Let 

D, denote the minimal a-coprimitive ideal associated with L. Then EndR E ( M)  is 

semisimple if and only if D, is linked to L at only the first layer for 1 <= i <= n, and D, 

is not linked to Dj unless I, ~-I,. 

PROOF. By 3.2, if D, is not linked to Dj unless /, ~ / / ,  then Horn(/,,/~) = 0 

for / ,~/~.  Further by 3.3, EndRL is a division ring. Hence EndRE(M)  is 

semisimple. Conversely suppose EndRE(M) is semisimple. Then J =  

{j E End E(M)]  Ker j  =<e E(M)} = 0. By 3.1 if D, is linked to / j  at the ith layer, 

there exists a nonzero mapf : I j /Sc ,  1 I ~ I ~  and hence a nonzero map 

f * : / , ~ / , / S c , - 1 / s ~ / ,  where Kerf*_DSc, 1/. Then f* extends to a map 

k : E(M)---~ E ( M )  where k([il,- �9 ", i,]) = f*(i,) for i, E / ,  where 1 =< t -<_ n. Then 

k E J = 0, which implies that f = 0 unless i = 1. 

If f:L---~I~ where L ~ / j ,  then Kerf-<eL.  Again f extends to a map 

k :E(M)-- -~E(M) where k([ i~ , . . . , i , ] )=f( i , ) .  Then k E J  = 0  which implies 

that f = 0. By 3.2, Dt is not linked to /9,. 

From [8, 2.5] for the right noetherian ring R, there is only a finite number of 

a-coprimitive ideals, and hence only a finite number of isomorphism classes of 

a-indecomposable injectives. Let I~, . - . ,  Ik be a complete set of representatives 

of these injectives. If R is an a-smooth ring, then in [4, 4.11] we show that R is 

semicritical provided S~L = I, for all i, 1 =< i =< k. We get another equivalence 

using 3.4. 

3.5. COROI.LAaY. Let Ii, " �9 ", Ik denote a complete set of distinct representatives 

of the isomorphism classes of a -indecomposable injectives. Let M =  

I1 G I2 0 "  " G Ik. Then EndR M is semisimple artinian if and only if S ~I, = L for 
all l<=i<-k. 
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Let Q be a uniform quasi-injective module which is a-smooth and let 

0CScIQ C . . .  CSc,Q = Q be an a-semicritical socle series for Q. In 2.7 it is 

shown that the Jacobson radical N -- N(A) of A = EndR Q is nilpotent with index 

of nilpotency =< n. Using linkage we can improve upon this bound. 

3.6. PROPOSITION. Let Q be a uniform quasi-injective a-smooth module with 

A = E n d R Q  and N = { f ~ A I K e r f < = e Q } .  Let D denote the minimal a- 
coprimitive ideal associated with E (Q  ). Then the index of nilpotency of N is <-_ 
the number of layers of Q to which D is linked. 

PROOF. The proof is by induction on the number n of layers of Q to which D 

is linked. If n - 1, then D is linked only to the first layer of Q. As in 3.3 this 

implies that J -- 0. Suppose D is linked to exactly n layers of Q where n > 1. Let 

Sc,Q/Sc,_,Q be the last layer of Q to which D is linked. Then Sc,_~Q is an 

a-smooth uniform quasi-injective module such that D is linked to exactly n - 1 

layers of Sc,_~Q. By induction if N * =  N(EndR Sc, ~Q), then (N*) " - ' =  0. 

Let j l , ' "  ",j, E N. Then j, I Sc,_~Q E N* which implies that j2"" "fl (Sc,_,Q) = 

0. Thus j2"" "j, (Sc,Q) is a homomorphic image of SctQ/Sc, ~Q and hence by 2.5, 

j2.. . j ,(Sc,Q)CSc~Q. By 2.5 then j j2 . ' . j , (Sc ,Q)=O.  Let k be the largest 

integer such that H2""j , (SckQ)=O.  If SckQ~ Q, then j j 2 " " j ,  induces a 

nonzero mapSck+~Q/SckQ ~ Q. By 3.1, D is linked to the (k + 1)st layer of Q. 

However k _-> t and SctQ/Sc,_IQ is the last layer of Q to which D is linked which 

is impossible. Thus SckQ = Q and j , j2""f l  = O. 

4. The localization of R with respect to J/t~ 

In [7, 8.9], the following theorem appears providing a converse to the 

Teply-Miller Theorem [13]. We include a sketch of the proof for the conveni- 

ence of the reader. Also see [14] and [15] by C. Nastasescu and [12] by G. 

Hansen. 

4.1. THEOREM. Let M be a quasi-injective module over a ring A and let 

A = EndAM, then the following are equivalent. 

(1) M is a A-module. 

(2) AM is noetherian. 

(3) AM is artinian and noetherian. 
(4) M satisfies the ascending chain conditions for right annihilators in A and the 

biendomorphism ring of MA is semiprimary. 

PROOF. The proof of (2)--->(1) is direct and (3)--->(2) is clear. To show 

(1)-->(3), we assume first that MA is injective. Let �9 be the torsion theory 



VOI, 45, 1 9 8 3  ENDOMORPHISM RING OF A A-MODULE 325 

cogenerated by M. By [17, p. 61], A satisfies the descending chain condition for 

z-closed right ideals and hence by [13, 1.4], A satisfies the ascending chain 

condition for z-closed right ideals. If x~ , - . . ,x ,  E M, then (Ax~ + . - .  + A x , )  ~ = 

Ax~ + .  �9 �9 + Ax,. Thus ,xM satisfies the ascending and descending chain condition 

for finitely generated submodules. Hence xM is noetherian, which in turn 

implies that .xM is artinian. 

If we now assume that M is a quasi-injective A-module, then M is finitely 

annihilated. Hence, M is a A-injective A/ann  M-module. Since EndAM = 

Endn/~nnMM, the result follows. 

The impIication (3)--~ (4) is a consequence of [9, p. 324] where it is shown that 

the endomorphism ring of a module of finite length is semiprimary. 

Finally (4)--~ (1) is a consequence of the following result of [7, 8.9]. 

4.2. PROPOSITION [C. Faith]. Let M be a module over a semiprimary ring S and 

let 0 : A --~ S be a ring homomorphism such that 0(1A) = ls. I f  M as an A -module 

via 0 satisfies the ascending chain condition for right annihilators, then M is a 

A-module. 

If z is a torsion theory for a ring A, then as in [10] let QT (M) denote the 

localization of MA with respect to ~-, let A, denote the localization of A with 

respect to ~- and let E , ( M )  denote the z-injective hull of M. From [10, p. 61] 

there exists a ring homomorphism ? : A --~ AT. From 1.4 and 1.5 of [15], we have 

4.3. PROPOSITION [C. Nastasescu]. I f  E is a A-injective right A-module ,  then 

A t  is a semiprimary ring, where "r is the torsion theory cogenerated by E. In addition 

E is a A-injective module over AT, and A~ ~ Biend(ER). 

I f  A is right noetherian, then every A~-module N is a A-module over A via the 

ring homomorphism ~ : A --~ At .  

4.4. COROLLARY. Let M be a right module over the right noetherian ring A,  

and let ~" be a torsion theory. I f  R ,  is semiprimary, then Q, (M)  is a A-module over 

R. 

I f  MR is "r-torsionfree, then M is a A-module over R. 

PROOF. This follows from 4.2 and the fact that if M is torsionfree, then M 

embeds in Q,(M).  

We now consider the ring R which is right noetherian and [R I = a. If R is 

a-smooth,  then E ( R )  is a-smooth,  and hence by 2.3, is a A-module. Thus from 

4.3 we have 
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4.5. Tr~EOREM. If the ring R is a-smooth, then the complete ring of quotients 

Q(R ) is semiprimary. 

In [8], we show that there exists a 1-1 correspondence between the a -  

indecomposable injective modules, the a-primes and the minimal a-coprimitive 

ideals. In this correspondence, if I is an a- indecomposable injective, then I is 

associated with the a-pr ime P = ass I and the minimal a-coprimitive ideal 

D = ann SL 
Let J1, '" ",Jn denote a complete set of representatives of the isomorphism 

classes of ~-indecomposable injectives. The topology ~ = {H < R I I R / H I <  
a} is determined by J~,..  ",Jn. It is also determined by E ( R / N )  where N 

denotes the intersection of the a-primes,  and by E(R/K~ (R)) where K~(R) 

denotes the intersection of the minimal a-coprimitive ideals. 

4.6. PROPOSITION. The ring R~o is semiprimary and all modules over R~o are 
A-modules over R. 

PROOF. Let E = J~ (~- �9 �9 G J,.  By 2.3, E is a A-injective module. The result 

now follows from 4.3. 

By applying the results of section 3, we can determine when R~o is 

semisimple. 

4.7. PROPOSITION. The following are equivalent. 
(1) R~% is semisimple artinian. 
(2) SI = I for all a-indecomposable injective modules L 
(3) K~ (R) = T, where T is the maximal right ideal with [ T I < a. 

PROOF. The equivalence of (2) and (3) is from [4, 4.7]. 
(3)---> (1): If ~- = ~ ,  then ~ ' (R)= T. We now use [3, 6.5]. Let ER (R / z (R ) )=  

I1 O " "  O I, where I, are a- indecomposable injectives for all i, where 1 _- i _-< n. 

Since SI ,=L  for all i, then S c ( I 1 G " ' O I n ) = 1 1 ( ~ " ' O I , .  Now 

R/r(R)NoI1 e " "  �9 In and finitely generated submodules of I 1 0 " "  G I, are 

semicritical. Hence if x ~ I~ 0 " "  (~ In, then I xR + R/'r (R )/R/~'(R )[ < ol. Thus 
E, (R/T(R )) = 11 0 ' ' "  0 I,. By 3.5, End(E,  (R/'r(R ))) is semisimple and equals 

e~o. 
(1)---~ (3): Suppose R~o is semisimple. Since each a- indecomposable injective 

module I is ~t~-torsionfree, then I is an R~o-module. By [4, 3.1], SI is At,-closed 

in Is. Hence O~o (SI) = SI and therefore SI is also an R~o-module. Since R~. is 

semisimple and I is indecomposable, necessarily I = SI. 
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4.8. COROLLARY. I f  R~ ,  is semisimple,  then Q ( R ) =  R ~  if  and  only i f  

K ~ ( R ) = O .  

PROOF. If K ~ ( R ) = 0 ,  then  by  [4, 4.11], Z ( R ) = 0  and  the set of large  r ight  

ideals  equals  ://o. Thus  R~,. = Q ( R ) .  

Conve r se ly  let  ~- = J/~ and  let  T = r ( R ) .  By [10, 6.11], then  R , o T  = 0. H e n c e  

O ( R ) .  T = 0 which impl ies  tha t  T = 0. Since R~,. is s emis imple  K~ ( R ) =  T by 

4.7. Thus  K~ ( R )  = 0. 

W e  close this sec t ion  with  an example  to i l lus t ra te  some  of the  results .  

4.9. EXAMPLE. Le t  

A = Z Zp and B =  Z Zp . 

0 Zp 0 Zp 

T h e n  A and B are  r ight  n o e t h e r i a n  r ings of Krul l  d imens ion  1. N o w  A ~  = [o ~ o ~ 

which is s e m i p r i m a r y  and  B , ,  = [o ~ o~ which is semis imple .  
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